Alkaline textile wastewater biotreatment: A sulfate-reducing granular sludge based lab-scale study.

نویسندگان

  • Qian Zeng
  • Tianwei Hao
  • Hamish Robert Mackey
  • Li Wei
  • Gang Guo
  • Guanghao Chen
چکیده

In this study the feasibility of treating dyeing wastewater with sulfate reducing granular sludge was explored, focusing on decolorization/degradation of azo dye (Procion Red HE-7B) and the performance of microbial consortia under alkaline conditions (pH=11). Efficiency of HE-7B degradation was influenced strongly by the chemical oxygen demand (COD) concentration which was examined in the range of 500-3000mg/L. COD removal efficiency was reduced at high COD concentration, while specific removal rate was enhanced to 17.5 mg-COD/gVSSh-1. HE-7B removal was also improved at higher organic strength with more than 90% removal efficiency and a first-rate removal constant of 5.57h-1 for dye degradation. Three dye-degradation metabolites were identified by HPLC-MS. The granular structure provided enhanced removal performance for HE-7B and COD in comparison to a near-identical floc SRB system and the key functional organisms were identified by high throughput sequencing. This study demonstrates an example of a niche application where SRB granules can be applied for high efficient and cost-effective treatment of a wastewater under adverse environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lab Scale Studies on Water Hyacinth (Eichhornia crassipes Marts Solms) for Biotreatment of Textile Wastewater

Textile wastewater contains substantial pollution loads in terms of Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), Total Suspended Solids (TSS), Total Dissolved Solids (TDS) and heavy metals. Phytoremediation used for removing heavy metals and other pollutants by aquatic macrophytes treatment systems (AMATS) is well established environmental protective technique. A lab scale stud...

متن کامل

Sequencing batch biofilter granular reactor for textile wastewater treatment.

Textile wastewater is difficult to treat as it usually contains considerable amounts of different pollutants, which are often recalcitrant, toxic and inhibitory. Therefore, complex treatment schemes based on the sequence of various steps are usually required for an effective treatment. This explains why textile effluents are often treated in centralized plants and sometimes mixed with municipal...

متن کامل

Characterization of sulfate-reducing granular sludge in the SANI

The Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI) process is a sulfur cycle-based biological carbon and nitrogen removal process that has been developed in Hong Kong to close the loop between the hybrid water supply and saline sewage treatment. The major bioreactor of this new technology is a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) that convers organics ...

متن کامل

Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed munic...

متن کامل

Example study for granular bioreactor stratification: Three-dimensional evaluation of a sulfate-reducing granular bioreactor

Recently, sulfate-reducing granular sludge has been developed for application in sulfate-laden water and wastewater treatment. However, little is known about biomass stratification and its effects on the bioprocesses inside the granular bioreactor. A comprehensive investigation followed by a verification trial was therefore conducted in the present work. The investigation focused on the perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 332  شماره 

صفحات  -

تاریخ انتشار 2017